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Motivation

Everybody knows what the Clifford group is

,
only Maris doesn’t know. . .

I’m obsessed with symmetric structures in the Hilbert space

Clifford group has lots of applications

I know the results, but I haven’t seen the proofs

Some folklore results with no proofs available
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Pauli matrices

Single qubit

The set of Pauli matrices is P = {I,X, Y, Z}, where

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

For n qubits

Pn = {σ1 ⊗ σ2 ⊗ · · · ⊗ σn |σi ∈ P} .

Vector space structure

The group Pn/U(1) is isomorphic to a vector space over F2 with
dimension 2n via identification

Z Y
| |
I X
multiply

⇐⇒

(0, 1) (1, 1)
| |

(0, 0) (1, 0)
add
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Clifford group

Definition (sloppy)

Unitaries that take Paulis to Paulis via conjugation.

Eigenvalues

The eigenvalues of X, Y , Z are ±1. Let P ∗n = Pn \ {I⊗n}.
All matrices in P ∗n have eigenvalues ±1 with equal multiplicity.

You can

X 7→ −X, e.g., ZXZ = −X,

X ⊗ I 7→ X ⊗X, e.g.,
CNOT (X ⊗ I)CNOT † = X ⊗X.

You cannot

X 7→ I,

X 7→ iX.

Global phase

U and eiϕU act identically, i.e., UMU † = (eiϕU)M(eiϕU)†.
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Clifford group

Definition
The Clifford group Cn on n qubits is

Cn =
{
U ∈ U(2n) |σ ∈ ±P ∗n ⇒ UσU † ∈ ±P ∗n

}
/U(1).
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Clifford group C1
Single qubit

±P ∗1 = {±X,±Y,±Z}.

Restrictions
Conjugation must preserve the structure of Pauli matrices.

Y = iXZ, thus UY U † = i(UXU †)(UZU †),

U(−X)U † = −UXU † and similarly for Z.

Thus it is enough to specify where X and Z go. However, since X
and Z anti-commute, so must UXU † and UZU †.

All possibilities

X can go to any element of ±P ∗1 ,

Z can go to any element of ±P ∗1 \
{
±UXU †

}
.

Group order

|C1| = 6 · 4 = 24.
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Clifford group C1
Clifford group rotations
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Clifford group C1

Cuboctahedron

Poll
Guess what’s the value of |C2|? Answer: |C2| = 11520.
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Order of Cn
Restrictions
It is enough to specify where Xi and Zi go for all i ∈ {1, . . . , n}.

All X’s and Z’s commute, except Xi and Zi that anti-commute:

X1 X2 . . . Xn−1 Xn

| | | |
Z1 Z2 . . . Zn−1 Zn

Claim
Each matrix in ±P ∗n commutes (anti-commutes) with exactly half
of Pauli matrices Pn.

Proof.
Let σ ∈ ±P ∗n and k be a position where σ does not contain I. All
Paulis that anti-commute with σ can be constructed as follows:

put any of I, X, Y , Z at each position other than k,

fill the kth position in any of two possible ways so that the
obtained matrix anti-commutes with σ.
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Order of Cn
Restrictions

X1 X2 . . . Xn−1 Xn

| | | |
Z1 Z2 . . . Zn−1 Zn

Counting

Where can U ∈ Cn send Xn and Zn?

Xn can go to any element of ±P ∗n , i.e., 2(4n − 1) choices,

Zn can go to any element of ±P ∗n that anti-commutes with

UXnU
†, i.e., 2|Pn|

2 = 4n choices.

Similarly for the next pair (Xn−1, Zn−1), just replace n by n− 1.

Result

|Cn| =
n∏

j=1

2(4j − 1) · 4j = 2n2+2n
n∏

j=1

(4j − 1).
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Order of Cn

How does it grow?

n |Cn|
1 24
2 11520
3 92897280
4 12128668876800
5 25410822678459187200

This is 1
8 times “Sloane’s A003956”.

Upper bound

|Cn| ≤ 2n2+2n
n∏

j=1

4j = 22n2+3n.

http://www.research.att.com/~njas/sequences/A003956
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Order of Cn

Their definition

Calderbank R.A., Rains E.M., Shor P.W., Sloane N.J.A.,
Quantum Error Correction Via Codes Over GF(4), arXiv:quant-ph/9608006v5.

Explanation of factor 8

They assume that H,P ∈ Cn, i.e., they define Cn as the group
generated by H, P , and CNOT . Thus they get 8 times more,
since ηI ∈ Cn, where η = 1+i√

2
is the 8th root of unity.

http://arxiv.org/abs/quant-ph/9608006v5
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Generators of Cn

Theorem
The Clifford group Cn is generated by H, P , and CNOT :

H = 1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
, CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
.

More precisely, Cn = 〈Hi, Pi, CNOTij〉 /U(1).

Proof.
It is easy to verify that C1 = 〈H,P 〉 /U(1). Use induction on n.
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Generators of Cn
Proof (continued).

Let U ∈ Cn+1. Since X1 and Z1 anti-commute, so do UX1U
† and

UZ1U
†. We can permute qubits and apply elements of C1 so that

UX1U
† = X ⊗M ′,

UZ1U
† = Z ⊗N ′.

for some M ′, N ′ ∈ ±Pn.

Let

U(|0〉 ⊗ |ψ〉) = 1√
2
(|0〉 ⊗ |ψ0〉+ |1〉 ⊗ |ψ1〉).

Define U ′ by U ′ |ψ〉 = |ψ0〉. One can show that U ′ ∈ Cn. Then we
can implement U as follows:

• H •
/ U ′ / N ′ / M ′ /
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Stabilizer formalism

Who doesn’t know that the stabilizer formalism is?
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Gottesman-Knill theorem

Schrödinger vs. Heisenberg

Schrödinger picture: quantum states evolve in time,

Heisenberg picture: operators evolve in time.

Theorem (Gottesman-Knill)

Any quantum computation involving only:

measurements in standard basis,

Clifford group gates (conditioned on classical bits, e.g.,
measurement outcomes)

can be perfectly simulated in polynomial time on a probabilistic
classical computer.

CHP (CNOT-Hadamard-Phase)

Program in C written by Aaronson and Gottesman to simulate
such circuits. Can easily handle up to 3000 qubits!
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Universal set of quantum gates

Mathematicians have shown that. . .

Nebe G., Rains E.M., Sloane N.J.A.,
The Invariants of the Clifford Groups, arXiv:math/0001038v2.

In other words
Let m ≥ 1. Then Cm together with any other gate not in Cm form
a universal set of quantum gates.

Proof.
. . .RCM -lattices . . . natural module . . . inertia group . . . is ramified
. . . which is a contradiction.

Question
Is there an elementary proof for this?

http://arxiv.org/abs/math/0001038v2
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Universal set of quantum gates

Another zero-knowledge proof
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Thank you for your attention!
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