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°

Some folklore results with no proofs available
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Pauli matrices

Single qubit
The set of Pauli matricesis P = {I,X,Y, Z}, where

I=(59), Xx=05), Y=0%) 2=("2%)
For n qubits

Pn:{0'1®02®"‘®0n|0iEP}.

Vector space structure
The group P, /U(1) is isomorphic to a vector space over Fy with
dimension 2n via identification

Z—Y (0,1) — (1,1)
| | | \

I—X 7 (0,00—(1,0)

multiply add
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Clifford group

Definition
The Clifford group C,, on n qubits is

Co = {U cU@2") |0 € +PF = UsU' ¢ iP;{} JU(1).
Eigenvalues

The eigenvalues of X, Y, Z are 1. Let P = P, \ {I®"}.
All matrices in & P} have eigenvalues =1 with equal multiplicity.
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Single qubit case

Clifford group C;

Single qubit

+Pf = {+X, +Y,+Z}.

Restrictions

Conjugation must preserve the structure of Pauli matrices.
o Y =iXZ, thus UYU' = i{(UXUN(UZUY),
o U(—X)UT = —UXU' and similarly for Z.

Thus it is enough to specify where X and Z go. However, since X
and Z anti-commute, so must UXUT and UZUT.

All possibilities
@ X can go to any element of £P],
@ Z can go to any element of £P; \ {:i:UXUT}.

Group order
IC1|=6-4=24.



Introduction Definition Order Generators Applications References

Clifford group C;
Clifford group rotations




Introduction Definition Order Generators Applications References

Clifford group C;
Clifford group rotations




Introduction Definition Order Generators Applications References

Clifford group C;
Clifford group rotations




Single qubit case

Clifford group C;
Clifford group rotations

—_—
Yo

M —
=
F

|




Single qubit case

Clifford group C;

Cuboctahedron

z




Single qubit case

Clifford group C;

Cuboctahedron

z




Single qubit case

Clifford group C;

Cuboctahedron

z

Poll

Guess what's the value of |Ca|?




Single qubit case

Clifford group C;

Cuboctahedron

z

Poll
Guess what's the value of |C2|? Answer: |Ca| = 11520.
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Order of C,

Restrictions
It is enough to specify where X; and Z; go for all i € {1,...,n}.
All X's and Z's commute, except X; and Z; that anti-commute:
X1 X9 ... Xn1 X,
] ! |

4y Zy ... ZLp_1 Zn

Claim
Each matrix in =P commutes (anti-commutes) with exactly half
of Pauli matrices P,.

Proof.
Let 0 € =P and k be a position where o does not contain 1. All
Paulis that anti-commute with o can be constructed as follows:

@ put any of I, X, Y, Z at each position other than £k,

@ fill the kth position in any of two possible ways so that the
obtained matrix anti-commutes with o.
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Order of C,

Restrictions
X: Xo ... X, X,

I | |
Zv Zoy ... Znp1 Zn

Counting
Where can U € C,, send X,, and Z,,7

e X, can go to any element of £P, i.e., 2(4™ — 1) choices,

@ Z, can go to any element of £P that anti-commutes with

UX, U ie., @ = 4™ choices.

Similarly for the next pair (X,,—1, Z,,—1), just replace n by n — 1.

Result

n

Cal = [[2(47 — 1) - 47 = 27"+ T (47 - 1).
j=1

J=1
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2 11520
3 92897280
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How does it grow?

n ICy|

1 24
2 11520
3 92897280
4 12128668876800
5 | 25410822678459187200

This is % times “Sloane’s A003956" .

Upper bound

n
‘Cn‘ < 2n2+2n H 4]' _ 22n2+3n'
j=1
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Calderbank R.A., Rains E.M., Shor P.W., Sloane N.J.A.,
Quantum Error Correction Via Codes Over GF(4), arXiv:quant-ph/9608006v5.

The complex Clifford group L is defined to be the subgroup of the normalizer of E in U/(2")
that contains entries from Q[if], 7 = (1 +i)//2. The full normalizer of E in U/(2") has an
infinite center consisting of the elements ™I, § € R. Although these central elements have
no effect quantum-mechanically, we wish to work with a finite group. The smallest coefficient

ring we can use is Q[r], since
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The complex Clifford group L is defined to be the subgroup of the normalizer of E in U/(2")
that contains entries from Q[if], 7 = (1 +i)//2. The full normalizer of E in U/(2") has an
infinite center consisting of the elements ™I, § € R. Although these central elements have
no effect quantum-mechanically, we wish to work with a finite group. The smallest coefficient

ring we can use is @[f}] since
{ 1 ( - ) ( )}3 (” )
v2\1 -1 0 i 0n/ -’

Explanation of factor 8
They assume that H, P € C,, i.e., they define C,, as the group
generated by H, P, and CNOT. Thus they get 8 times more,

since nl € C,, where n = 1—\75 is the 8th root of unity.


http://arxiv.org/abs/quant-ph/9608006v5
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Generators of C,

Theorem
The Clifford group C,, is generated by H, P, and CNOT:

H= 510, P=(). ovor—(
More precisely, C,, = (H;, P;, CNOT;;) /U(1).

Proof.

It is easy to verify that C; = (H, P) /U(1). Use induction on n.

—OoOOoO
OoO—OO

0
1
0
0

oo+
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Proof (continued).

Let U € C,,+1. Since X1 and Z; anti-commute, so do UX,U' and
UZ,U'. We can permute qubits and apply elements of C; so that

UX U =X o M,
Uz Ut =Z e N'.

for some M', N’ € £P,.
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Generators of C,

Proof (continued).

Let U € C,,+1. Since X1 and Z; anti-commute, so do UX,U' and
UZ,U'. We can permute qubits and apply elements of C; so that

UX U =X o M,
UZUY=Z @ N'.

for some M',N' € £P,. Let
U(10) @ [4) = 55(10) @ [0) + 1) @ [31).

Define U’ by U’ [¢)) = |¢9). One can show that U’ € C,,. Then we
can implement U as follows:
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Applications

Gottesman-Knill theorem

Schrodinger vs. Heisenberg

@ Schrédinger picture: quantum states evolve in time,

@ Heisenberg picture: operators evolve in time.

Theorem (Gottesman-Knill)
Any quantum computation involving only:
@ measurements in standard basis,

e Clifford group gates (conditioned on classical bits, e.g.,
measurement outcomes)

can be perfectly simulated in polynomial time on a probabilistic
classical computer.
CHP (CNOT-Hadamard-Phase)

Program in C written by Aaronson and Gottesman to simulate
such circuits. Can easily handle up to 3000 qubits!
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Universal set of quantum gates

Mathematicians have shown that. ..

Nebe G., Rains E.M., Sloane N.J.A.,
The Invariants of the Clifford Groups, arXiv:math/0001038v2.

Theorem 6.5 Let m > 1 and let G be a finite group such that X, < G < U(2™ C). Then
there exists a root of unity ¢ such that

G = (X, (o).
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Universal set of quantum gates

Mathematicians have shown that. ..

Nebe G., Rains E.M., Sloane N.J.A.,
The Invariants of the Clifford Groups, arXiv:math/0001038v2.

Theorem 6.5 Let m > 1 and let G be a finite group such that X, < G < U(2™,C). Then
there exists a root of unity ¢ such that

G = (X, (o).

In other words
Let m > 1. Then C,, together with any other gate not in C,, form

a universal set of quantum gates.

Proof.

... RCps-lattices ... natural module .. .inertia group ...is ramified
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Mathematicians have shown that. ..

Nebe G., Rains E.M., Sloane N.J.A.,
The Invariants of the Clifford Groups, arXiv:math/0001038v2.

Theorem 6.5 Let m > 1 and let G be a finite group such that X, < G < U(2™,C). Then
there exists a root of unity ¢ such that

G = (."Ynl-<12m>'
In other words

Let m > 1. Then C,, together with any other gate not in C,, form
a universal set of quantum gates.

Proof.

... RCps-lattices ... natural module .. .inertia group ...is ramified
...which is a contradiction. O
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Universal set of quantum gates

Mathematicians have shown that. ..

Nebe G., Rains E.M., Sloane N.J.A.,
The Invariants of the Clifford Groups, arXiv:math/0001038v2.

Theorem 6.5 Let m > 1 and let G be a finite group such that X, < G < U(2™ C). Then
there exists a root of unity ¢ such that

G = (."Ym- <I2m>'

In other words
Let m > 1. Then C,, together with any other gate not in C,, form
a universal set of quantum gates.

Proof.

... RCps-lattices ... natural module .. .inertia group ...is ramified
... which is a contradiction. O
Question

Is there an elementary proof for this?
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Another zero-knowledge proof
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